حساب المثلثات الكروي
إن أقصر مسار بين نقطتين على سطح كرة هو قوس من الدائرة التي تمر بهاتين النقطتين ويتطابق مركزها مع مركز الكرة. ودائرة كهذه تسمى دائرة عظمى. وعليه فإن دوائر الطول التي تمر بالقطبين الشمالي والجنوبي هي دوائر عظمى. وكل دوائر العرض باستثناء دائرة الاستواء ليست دوائر عظمى. إذ إن مراكزها تقع أعلى أو أسفل من مركز الكرة.

تقاس أقواس الدوائر بالدرجات حيث مقياس الدائرة التامة هو 360°، ومحيط الدائرة العظمى على سطح الأرض حوالي 4008 كم، مما يجعل كل درجة من قوس دائرة عظمى على سطح الأرض تساوي حوالي 13,111 كم. وتعرف الزاوية بين دائرتين عظميين بأنها الزاوية بين المماسين لهاتين الدائرتين عند نقطة تقاطعهما، حيث المماس هو المستقيم الذي يمس القوس عند نقطة واحدة فقط دون أن يقطعه. ويتكون المثلث الكروي من تقاطعات ثلاث دوائر عظمى.

وبما أن كلاً من زوايا وأضلاع المثلث الكروي تقاس بالدرجات، فإن قوانين حساب المثلثات الكروي تختلف نوعاً ما عن قوانين حساب المثلثات المستوي. كذلك تختلف المثلثات الكروية عن المثلثات المستوية في أن مجموع زوايا المثلث الكروي تكون دائماً أكثر من 180°. بيد أن حساب المثلثات الكروي يستخدم الجداول ذاتها التي يستخدمها حساب المثلثات المستوي.

والقانونان الأساسيان لحساب المثلثات الكروي هما قانون الجيب للمثلثات الكروية الذي نصه:

أَ/ جا أ = بَ/ جا ب = جَ/ جا ج

وقانون جيب التمام للمثلثات الكروية الذي ينص على أن:

جتا جَ = (جتا أ َ) (جتا بَ) + (جا أ َ) (جا بَ) (جتا ج). ويُظهر الشكل أدناه كيفية تطبيق هذين القانونين : تحسب المسافة بين نيويورك وباريس برسم مثلث كروي رؤوسه عند نيويورك وباريس والقطب الشمالي.