قياس ومقارنة المقادير. رأينا أن العديد من مسائل علم الحساب تحل بوساطة عد أو تجميع الأعداد، وأن الحلول أعداد صحيحة. غير أن هناك مسائل أخرى تحل بوساطة قياس ومقارنة المقادير. ولرصد حلول هذه الأنواع، كثيرًا ما نحتاج لاستخدام الكسور .

وفي بعض مسائل القياس بالسنتيمترات، قد نستخدم المسطرة. ولقياس كمية الوقود المشتراة باللترات، مثلاً نستخدم جهاز القياس الملحق بالمضخة. وسنجد في أحيان عديدة عند قياسنا لهذه المقادير أن الإجابة ليست عددًا صحيحـًا من السنتيمترات أو اللترات. وعندئذ نسجل نتيجة القياس لأقرب ربع أو عشر أو جزء من الستين، أو جزء من المائة من وحدة ما، وذلك اعتماداً على الدقة التي نريدها، والدقة المتوافرة لأجهزة القياس المستخدم.
ومن ثم فإننا نقدم الإجابات عن الأسئلة المتعلقة بالناس أو البيض أو البيوت، أو ما شابه ذلك بوساطة الأعداد الصحيحة. ويكون عندئذ نظام الأرقام: IMG،1،2،3 وهكذا، مناسباً، ولا نحتاج لاستخدام الكسور، ولكن عند القياس، كثيراً ما نحصل على قيم بينية تستلزم استخدامنا للكسور.

وعندما نقوم بمقارنة مقدارين، فإننا نحصل على نسبة؛ فمثلاً، إذا كان لعلي ست كريات، ولعثمان ثمان، فإن نسبة ما عند علي من الكريات إلى ما عند عثمان هي6 إلى 8، ونكتبها عادة بالشكل . وتسمى هذه النسبة لعددين صحيحين كسرًا. وبالإمكان كتابة الكسر العادي بالشكل العشري 75.IMG أو في شكل نسبة مئوية 75%. وكل هذه الأشكال تمثل العدد نفسه.
الكسور العادية. يتكون كل كسر عادي من جزأين. الجزء الأعلى ويسمى البسط، والأسفل ويسمى المقام، ويفصل بينهما خط مستقيم يدعى شرطة الكسر. فإذا قسمنا بوصة إلى أربعة أجزاء متساوية، ورأينا أن نسجل طول ثلاث من هذه القطع، فسنكتبه على النحو التالي: بوصة، حيث يبين الكسر أننا أخذنا ثلاثة أجزاء من الأربعة التي قسمت إليها البوصة.

وللكسور العادية معنيان آخران. ففي مسائل النسبة يكون البسط عدداً تجري مقارنته بالعدد في المقام. كما أننا نقوم أحياناً بتسجيل القسمة في هيئة كسر. فعلى سبيل المثال، يحمل المعنى نفسه لـ 8 ÷ 4.

وعند استخدام الكسور العادية، قد تمثل نتيجة قياس أو نسبة ما بكسور متعددة، فللكسور ، ، ، القيمة نفسها. وبالإمكان الوصول بكل واحد منها للقيمة ذاتها عن طريق قسمة كل من البسط والمقام بعدد مناسب. فإذا قسمنا كلاً من بسط ومقام الكسر بالعدد 3 مثلاً، سنحصل على الكسر المكافئ . وهناك قاعدة في الحساب نستطيع عن طريقها أن نختبر تكافؤ كسرين حتى وإن تعذرت ملاحظة العدد الذي ينبغي أن نقسم عليه لننتقل من أحد الكسرين إلى الآخر. يتساوى كسران في القيمة إذا كان حاصل ضرب بسط الأول بمقام الثاني، يساوي حاصل ضرب بسط الثاني بمقام الأول. فمثلاًً = 2/3 =34/51 ، لأن كلا من 51*2 و 3*34 يساوي 102.

وللتعرف على طرق جمع وطرح وضرب وقسمة الكسور،