الدوال. تعتمد الكمية التي تستهلكها طائرة من الوقود على سرعتها. وتعتمد قيمة الطوابع اللازمة لوضعها على طرد بريدي على وزن الطرد. وفكرة اعتماد شيء على شيء آخر من الأفكار المهمة في الرياضيات، وتسمى علاقة بين شيء وآخر. وتسمى العلاقات بين متغيرات في الجبر بالدوال. فالدالة بين متغير وآخر تعني أن قيمة أحد المتغيرين تعتمد على قيمة الآخر.

ويمكن توضيح فكرة الدالة عن طريق تقديم أمثلة مألوفة. لنفرض وجود أساس من الإسمنت يرتفع 16 سم فوق سطح الأرض، وأننا نريد أن نبني 6 طبقات من الحجر فوق هذا الأساس بحيث يكون ارتفاع كل منها 8 سم. في كل مرة ننتهي من بناء طبقة تحدث زيادة في الارتفاع الكلي.

لنرمز لعدد الطبقات بالرمز س وللارتفاع بالرمز ص.
لنفرض أننا نقيس قيم س و ص على خطين مثل المسطرة. أحد هذين الخطين أفقي ويمثل قيم س، والآخر رأسي ويمثل قيم ص. نسمي هذين الخطين محوري الإحداثيات ونقوم الآن بتمثيل كل زوج من قيم الجدول بنقطة على المنحنى ذي 7 نقاط.
ويمكن كتابة معادلة تصف هذا الخط من النقاط، وهذه المعادلة هي ص = 8 س + 16. فمثلاً إذا كانت س = 2 فإن ص = 8(2) + 16 = 32. وإذا كانت س = 5 فإن ص = 8 (5) + 16 = 56. من السهل أن نرى كيف تتوافق هذه المعادلة مع القيم الموجودة في الجدول. إن مجال ص في هذه المعادلة هو مجموعة الأعداد }صفر، 1، 2، 3، 4، 5، 6 {. وتسمى مجموعة قيم ص بمدى ص، وهي مجموعة الأعداد {64، 56، 48، 40، 32، 24، 16}. وفي الرياضيات، تعرف العلاقة بين مجموعتين من الأعداد على أنها مجموعة من الأزواج المرتبة. وتكتب هذه المجموعة كالتالي:

}(س، ص) (صفر، 16)، (1، 24)، (2، 32)، (3، 40)، ...، (6، 64){ .

هذه المجموعة من الأزواج المرتبة دالة. وتسمى دالة متقطعة لأننا لانستطيع تمثيلها بخط متصل. لاحظ أن هذه الدالة ممثلة بنقاط في الرسم أمامنا.
ليكن لدينا حوض للأحياء المائية ارتفاعه 36 سم ويرتفع قاعه بمقدار 20 سم عن الأرض، ولنفرض أنه عند صب الماء في الحوض يزيد ارتفاع سطح الماء بمقدار 4 سم كل دقيقة. هذا يعني أن ارتفاع الماء عن الأرض يعتمد على الزمن الذي ينسكب فيه الماء. لنرمز لعدد دقائق انسكاب الماء بالرمز س ولارتفاع الماء عن الأرض بالرمز ص. الجدول التالي يعطينا بعض قيم س و ص

إذا مثلنا هذه العلاقة على الرسم باستخدام الإحداثيات فإننا نحصل على مستقيم متصل وذلك لأن ارتفاع ص يتزايد تزايداً متصلاً.

والمعادلة التي تمثل هذا الخط المستقيم هي: ص = 4 س + 20. فإذا كانت س = 2 مثلا فإن ص = 4 (2) + 20 = 28، ومن السهل أن نرى كيف تتوافق هذه المعادلة مع القيم الموجودة في الجدول. إن مجال ص هو جميع الأعداد بين صفر و 9 ومدى ص هو جميع الأعداد بين 20 و 56 وتسمى هذه الدالة بالدالة الخطية لأنها متصلة ويمكن تمثيلها بخط مستقيم. أما المعادلة ص = 4 س+ 20 فتسمى معادلة خطية. وتعتبر دراسة المعادلات الخطية من بين أكثر المواضيع أهمية في الجبر.