بعد أن تتعلم استخدام المتغيرات والمعادلات والأعداد ذات الإشارة يصبح من السهل استيعاب المبادئ الأساسية في الجبر.


الرموز في الجبر. يدل الرمز + على عملية الجمع، غير أنه في الجبر أيضاً يعني العدد الموجب. أما الرمز - فيدل على الطرح والعدد السالب. وقد جرت العادة على استخدام الرمز (.) ليدل على عملية الضرب بدلا من × فنكتب حاصل ضرب أ و ب على الصورة، أ. ب، أو أحيانا أ ب، أو ( أ) (ب). (لاحظ أن كلا من 3. 6 و (3) (6) تعني أن العدد 3 مضروب بالعدد 6 ولكن 63 لايزال يعني العدد 63 كما في الحساب). ويُستخدم الرمز - ليدل على عملية القسمة كما هو الحال في الحساب.

ونستخدم القوسين ( )، والحاصرتين { } والمعقوفتين [ ] لحصر المقادير والأعداد. وتعرف جميعاً باسم إشارات التكديس لأننا نعامل كل ماهو محصور داخلها كمقدار واحد. وغالباً ما يكون من المهم تبسيط المقدار المحصور قبل أن نستخدمه في أجزاء أخرى من المسألة. لنتأمل المثال التالي من الأعداد.

[12 + { 4 + 5 - (5 - 3) + 4} - 4]

نبسِّط أولاً (5 - 3):

[12 + { 4 + 5 - 2 + 4} - 4]

ثم نبسط { 4 + 5 -2 + 4}:

[12 + 11 -4] = 19

بالطريقة نفسها نبسِّط الصيغ التي تحتوي على متغيرات كما في المثال التالي:

[5 س + 6س + }5 س - س + (3س + 4س){ - س]

نبسِّط أولا: }3 س + 4 س{:

[5 س + 6س + }5س - س + 7س{ -س]

ثم نبسط }5س - س + 7س{:

[5س + 6س + 11س - س] = 21س

وفي بعض الأحيان يكون من الأسهل التخلص من الأقواس التي تحصر مقداراً جبريًا دون تبسيطه. ويمكن تنفيذ ذلك باستخدام قاعدتي الجمع والطرح على الأعداد ذات الإشارة. على سبيل المثال يمكن كتابة الصيغة.

أ + (ب + جـ) على الصورة أ + ب + جـ

ولتوضيح ذلك نلاحظ أن التعبير 40 + (8 - 2) يعني أن العدد 8 - 2 أو 6 مضاف إلى العدد 40، أو 40 + 6. وبإسقاط الأقواس يكون 40، + 8 - 2 أو 48 - 2 مساوياً للصيغة المبسطة 40 + 6. إذا وجد أمام مقدار جبري بين قوسين إشارة + فبإمكاننا إزالة القوسين دون أن نغير إشارات المقادير التي بداخلها. على هذا فإن أ + (- ب - جـ) تصبح أ + (- ب) - جـ أو أ - ب - جـ.

أما إذا كان المقدار الجبري بين القوسين مسبوقاً بإشارة - فيجب أن نغير إشارات كل الكميات داخل القوسين بعد إزالتهما. فمثلا التعبير 6 - (-8) يصبح 6 + 8 أو 14 أي أننا نحول مسألة الطرح إلى مسألة جمع. وكمثال آخر: 6 - (+8) يصبح 6 + (-8) أو 6 - 8 = - 2. وإذا كان هنالك أكثر من مقدار بين القوسين فينبغي أن نغير إشارة كل واحد منهما. فمثلا 6 - (-3 + 2) يصبح 6 + 3 - 2 أو 7. وكقاعدة نستطيع أن نكتب أ - ( ب + جـ) بالشكل أ - ب - جـ.

أما إذا أردنا أن نغير إشارات المقادير أو الأعداد فإننا نعكس العملية فنقوم بوضعها داخل قوسين. فمثلاً يمكننا كتابة 8 + 7 على الصورة - (-8-7). و 8 + 4 - 6 على الصورة 8 - (-4 + 6).


القوانين الأساسية. هناك خمس قوانين أساسية في الجبر تحكم عمليات الجمع والطرح والضرب والقسمة. ويعبَّر عنها باستخدام متغيرات يمكن التعويض عنها بأي عدد كان. وهذه القوانين هي:

1- الخاصية الإبدالية للجمع. وتكتب س + ص = ص + س. وتعني أن الترتيب غير مهم عند جمع عددين إذ إن النتيجة واحدة. فمثلاً 2 + 3 = 3 + 2 و (-8) + (- 36) = (-36) + (-8).

2- الخاصية التجميعية للجمع. وتكتب س + (ص + ع ) = (س + ص) + ع، وتعني أنه عند جمع ثلاثة أعداد أو أكثر، فإنه يمكن جمع أي تشكيل منها أولاً، ثم إكمال الجمع دون أن يتأثر الناتج النهائي، فمثلا 2 + (3 + 4) = (2 + 3) + 4 أو 2 + 7 = 5 + 4.

3- الخاصية الإبدالية للضرب. وتكتب س ص = ص س. وتعني أن الترتيب غير مهم عند ضرب عددين إذ إن النتيجة واحدة. فمثلاً (2) (3) = (3) (2) و (-8) (- 36) = (-36) (-8) .

4- الخاصية التجميعية للضرب. وتكتب س (ص ع) = (س ص) ع. وتعني أنه عند ضرب ثلاثة أعداد أو أكثر فإنه يمكن ضرب أي تشكيل منها أولا، ثم إكمال الضرب دون أن يتأثر الناتج النهائي. فمثلا 2 (3 × 4) = (2 × 3) 4 أو 2 (12) = (6) 4.

5- خاصية توزيع الضرب على الجمع. وتكتب:

س (ص+ع) = س ص + س ع.

نوضح هذه الخاصية المهمة في الجبر بالمثال التالي:

3 (4+ 5) = (3 × 4) + (3 × 5). إن حاصل ضرب عدد في مجموع عددين مثل 3 (4 + 5) أو 3 × 9 يساوي مجموع حاصل ضرب العدد بأحد العددين وحاصل ضرب العدد بالعدد الثاني. لاحظ أن:

3 (4 + 5) = 3 (9) = 27 وكذلك.

(3 × 4) + (3 × 5) = 12 + 15 = 27.


تعريفات أخرى. من المهم أن نعرف بعض الكلمات الأخرى المستخدمة في الجبر. فالمقدار س2- 2س ص+ص يحتوي على ثلاثة أجزاء ترتبط بعمليتي الجمع أو الطرح، يُسمى كل جزء منها حداً. ويُسمى المقدار الجبري المكون من حد واحد فقط بوحيد الحد، فمثلا 5 س ص وحيد الحد، على الرغم من أنه يحتوي على ثلاثة عناصر (5، س، ص) مضروبة بعضها مع بعض يسمى كل منها عاملا. ويعرف المقدار ذو الحدين بأنه المقدار المكون من حدين بينهما إشارة جمع أو طرح، فمثلاً كل من س+ ص و 3أ2- 4ب ذات حدين. أما متعددة الحدود فهي المقدار المكون من حدين أو أكثر مرتبطة فيما بينها بإشارة جمع أو طرح، فمثلاً س - ص + ع متعدد الحدود. لاحظ أن ذات الحدين ليست إلا حالة خاصة من متعدد الحدود.

ويعني وضع المقادير جنباً إلى جنب في الجبر أنها مضروبة، فيدل التعبير 5 أ على حاصل ضرب أ في خمسة ويُسمى العدد 5 معامل أ. وبما أن 5 مضروب في الرمز أ ففي الجبر يسمى أ معاملا للعدد 5.كذلك في الصيغة أ (س+ ص) أ هو معامل (س + ص) و (س + ص) هو معامل أ. ولما كان أ = 1 × أ فإن بإمكاننا على الدوام استبدال أ بالصيغة 1 أ.


الجمع. تشبه عملية الجمع في الجبر إلى حد كبير مثيلتها في الحساب. فمثلاً حاصل جمع أ و أ هو 2 أ. نسمي أ و 2 أ حدين متشابهين وذلك لأنهما يحتويان المتغير نفسه. ولجمع كميتين جبريتين متشابهتين أو أكثر نستخدم خاصية توزيع الضرب على الجمع، فمثلاً.

2 س + 3 س + 4 س هو (2 + 3 + 4) س أو 9 س، إلا أننا لانستطيع التعبير عن حاصل جمع كميتين غير متشابهتين بحد واحد. فمثلا حاصل جمع أ و ب يكتب أ + ب. ولجمع 3 أ، 4 ب ، 6 أ و ب نستخدم خاصتي الإبدال والتجميع لعملية الجمع. ومن الواضح أن هاتين الخاصتين تساعداننا على جمع أية سلسلة من الحدود مكتوبة بأي ترتيب. وبتجميع الحدود المتشابهة نجد أن:

3 أ + 6 أ = 9 أ و 4 ب + ب = 5 ب .

إذن 3 أ + 4 ب + 6 أ + ب = 9 أ + 5 ب.

وبالإمكان تنظيم الحل على النحو التالي:



ولجمع مقادير غير متشابهة سالبة كانت أم موجبة نقوم باستخدام خاصة توزيع الضرب على الجمع. لنوضح هذا الاستخدام بجمع:

(2أ§ - ب²جـ + 6 ب د² + 2 د§) و

(4أ§ + 3ب²جـ - 4 ب د² - 3 د§) و

(3أ§ + 2ب²جـ + 2 ب د² - 4 د§) و

(-2أ§ - 8ب²جـ + 6 ب د² + 6 د§).

والعدد 3 الذي يظهر في الحدود مثل 2أ§ يعني أن المتغير أ مضروب في نفسه ثلاث مرات. انظر: المكعب. وقبل إجراء عملية جمع هذه المقادير نرتب الحدود في أعمدة.




ولتفسير ذلك نوضح عملية جمع العمود الثاني. هذا العمود هو:

- ب² جـ + 3ب²جـ + 2 ب² جـ - 8 ب² جـ

لاحظ أن كل حد من هذه الحدود هو حاصل ضرب عدد في ب² جـ. ومن ثم فإننا نضيف معاملات هذه الحدود وهي: -1، +3، +2، -8 لنحصل على الجواب. أي أن:

- ب² جـ + 3ب²جـ + 2 ب² جـ - 8 ب² جـ

= (-1 + 3 + 2 - 8) ب² جـ = -4ب²جـ .

والطريقة نفسها استخدمت لجمع الأعمدة الثلاثة الأخرى.


الطرح. في الجبر نستخدم للطرح القاعدة نفسها المستخدمة للأعداد ذات الإشارة. فعند طرح كمية جبرية من كمية أخرى نغير إشارة المطروح ونجمع الكميتين. فمثلا 8 أ - 3 أ هي في الحقيقة (+ 8) أ - (+ 3) أ وذلك لأننا عادة لانكتب الإشارة الموجبة. ولتغيير مسألة الطرح هذه إلى مسألة جمع فإن الكمية (+8)أ - (+3) أ تصبح (+8) أ + (- 3) أ أي 5 أ. ومسألة الطــرح (2أ§ - ب² جـ + 6 ب د² + 2د§) - (4أ§+ 3ب²جـ -4ب د² - 3د§) أصعب قليلا. أولاً نرتب الحدود المتشابهة ونضع كلاً في عمود منفصل.

2أ§ - ب²جـ + 6 ب د² + 2 د§

4أ§ + 3ب²جـ - 4 ب د² - 3 د§

ثم نطرح معاملات الحدود المتشابهة، وذلك بتغيير إشارات حدود المطروح والجمع:

2أ§ - ب²جـ + 6 ب د² + 2 د§

-4أ§ - 3ب²جـ + 4 ب د² + 3 د§

ـــــــــــــــــــــــــــــــــــــ

-2أ§ - 4 ب²جـ + 10 ب د² + 5 د§ .


الضرب. يُشار إلى عملية الضرب في الجبر عادة بكتابة مقدارين أو أكثر جنباً إلى جنب دون وضع إشارة ضرب بينهما، فمثلاً أ × ب تكتب أ ب. وعند تكرار عدد أو متغير أكثر من مرة فإننا نختصر الكتابة، فمثلاً نكتب المقدار أ ب² بدلاً من أ ب ب و أ ب4 بدلا من أ ب ب ب ب. والعدد المكتوب فوق المتغير ب يسمى أساً ويدل على عدد مرات ضرب المقدار في نفسه. فنحن نكتب أ² ويسمى مربع أ بدلاً من أ × أ وكذلك أ§ ويسمى مكعب أ بدلاً مـن أ × أ × أ. وبمقدورنا أن نعتبر أن أس المتغير الذي يظهر كعامل مرة واحدة هو 1 وإذا دعت الحاجة لجمع أو طرح الأسس فبإمكاننا أن نكتب أ1 بدلاً من أ.

وعند ضرب متغيرات متشابهة نجمع أسسها. ومع أن من الواضح أن ب² ×ب§ هو (ب×ب)×(ب× ب × ب) أي ب5 غير أنه من الأيسر أن نجمع الأسين:

ب² × ب§ = ب²+§ = ب5 لاحظ أنك لا تستطيع جمع الأسس في المقدار أ² × ب² وذلك لأن أ و ب قد يمثلان عددين مختلفين.

ويسمى المقدار مثل أ ب جـ د، ب جـ² د س حاصل الضرب. كما تسمى المقادير التي تشكل حاصل الضرب العوامل. فمثلا أ، ب، جـ ، د هي عوامل أ ب جـ د. وإذا أردنا ضرب أ ب جـ د، ب جـ² د س فإننا نجمع أسس العوامل المتشابهة. ففي (أ ب جـ د) (ب جـ² د س) نجد أن أ يظهر مرة، ب مرتين، جـ ثلاث مرات، د مرتين و س مرة فيكون:

(أ ب جـ د) (ب جـ² د س) = أ ب² جـ§ د² س. حيث مكنتنا الخاصية الإبدالية للضرب من إجراء عملية الضرب بأي ترتيب نشاء.

ولضرب مقدار جبري يحتوي على حدين أو أكثر بحد واحد، فإننا نستخدم خاصية توزيع الضرب على الجمع: س (ص + ع) = س ص + س ع. ولعل عملية الضرب (3 ب د) (5ب² جـ + 2د) تبين استخدام هذه الخاصية حيث نقوم بتعديل الطريقة المستخدمة في الحساب لإجراء هذه العملية فنكتب:



لاحظ أننا ضربنا الحد 3 ب د بالحد 5 ب² جـ ووضعنا الناتج 15 ب§ جـ د ليكون الحد الأول في حاصل الضرب، ثم ضربنا الحد 3 ب د بالحد2 د ووضعنا الناتج 6 ب د² كحد ثان في حاصل الضرب. وبالتالي فإن حاصل الضرب الكلي هو 15 ب§ جـ د + 6 ب د² .

ويكون الأمر أكثر صعوبة عند ضرب مقدارين كل منهما مكون من حدين أو أكثر. فمثلا نجري عملية الضرب (أ² - 2 أ ب + ب²) (أ - ب) على النحو التالي:



أولا نضرب كل حد من حدود المقدار المضروب بالحد الأول من المقدار المضروب منه، ونكتب ناتج عملية الضرب هذه كجزء من الجواب. ثم نضرب كل حد من حدود المضروب بالحد الثاني من المضروب منه، ونكتب ناتج عملية الضرب هذه في سطر آخر تحت الجزء الأول (مع مراعاة وضع الحدود المتشابهة في عمود واحد). وأخيرا نجمع السطرين لنحصل على الجواب النهائي. لاحظ أن ترتيب الحدود المتشابهة بأعمدة يسهِّل عملية الجمع النهائية.


القسمة. عملية القسمة في الجبر هي عكس عملية الضرب. ولما كنا نجمع الأسس عند ضرب الحدود المتشابهة فإنه ينبغي عند قسمة حدين متشابهين أن نطرح أس المقسوم عليه من أس المقسوم. فمثلاً:

ب ب ب ب ب ÷ ب ب = ب ب ب أو:

ب5 ÷ ب² = ب §. من الأسهل طرح الأسس:

ب5 ÷ ب§ = ب5-² و ب5- ² = ب§.

تذكر دائماً أنك تتعامل مع أسس وأنك لاتقسم ب5 على 2.

لنأخذ مثالا أكثر صعوبة:

(3 س 4 ص² ع - 9س§ ص ع²- 6 س² ص§) ÷ (3 س² ص) يجب أن نقسم هنا كل حد من حدود المقسوم على المقسوم عليه. ولإتمام ذلك نسأل عن الحد الذي نضربه بالحد (3 س² ص) ليعطينا الحد المطلوب من المقسوم. مثلا ماهو الحد الذي إذا ضربناه بالحد (3 س² ص) يعطينا الحد (-9 س§ ص ع²) ؟. والجواب هو (- 3 س ع²) وباستخدام هذه الطريقة نجد أن:

(3 س4 ص² ع - 9 س§ ص ع² - 6 س² ص§) ÷ (3س² ص) = (س ² ص ع -3 س ص² - 2 ص²).

لنأخذ مثالا آخر:

(12أ² + 18 أ ب + 6 ب²) ÷ ( 4أ + 2 ب).

لحل هذه المسألة تستخدم طريقة القسمة المطولة وهي تشبه الطريقة المتبعة في قسمة الأعداد:



نقسم أولا الحد الأول من المقسوم على الحد الأول من المقسوم عليه .نكتب الناتج وهو 3أ ليكون الحد الأول من خارج القسمة. نضرب الآن كل حد من حدود المقسوم عليه في الحد 3 أ أي أن:

3 أ (4 أ + 2 ب) = (12 أ2 + 6 أ ب).

نكتب هذا الناتج تحت المقسوم، ونطرح، ثم نكتب حاصل الفرق وهو 12 أ ب + 6 ب2. نقسم الآن 12 أ ب على الحد الأول من المقسوم عليه وهو 4 أ (12 أ ب - 4أ = 3ب). نكتب الناتج بإشارته (+ 3 ب) ليكون الحد الثاني من خارج القسمة. نضرب الآن كل حد من حدود المقسوم عليه بالحد 3 ب:

3 ب (4 أ + 2 ب) = (12 أب + 6ب²)

ثم نضع هذا الناتج تحت 12 أ ب + 6 ب² ونطرح لنجد أن حاصل الفرق هنا صفر. عند ذلك تتوقف عملية القسمة ونكون قد حصلنا على خارج القسمة 3 أ + 2 ب دون باق.


التحليل. يشبه التحليل إلى حد ما القسمة. فمثلاً:

(4أ + 2ب) و (3 أ + 3 ب) هما عاملان للمقدار 12أ² + 18 أ ب + 6 ب² لأننا إذا ضربنا (4أ + 2ب) (3أ + 3ب) نحصل على 12أ² + 18 أب + 6ب². ويعني التحليل كتابة مقدار جبري في شكل حاصل ضرب عوامل. من الممكن أن يكون لصيغة ما أكثر من تحليل. فمثلاً كل من 2 × 12، 3 × 8 و 4 × 6 هو تحليل للعدد 24. وتكمن أهمية التحليل في الجبر في استخدامه لتبسيط المقادير المعقدة.