التقارير والمعادلات. يُعرَف التقرير في الرياضيات بأنه جملة خبرية قد تكون صائبة أو خاطئة. وبمقدورنا تمثيل التقارير الرياضية بلغتنا اليومية وأمامنا هنا تقرير ناقص:

إن ....... هو الذي اخترع جهاز الهاتف. هذه العبارة ليست صائبة وليست خاطئة. ولكن لو وضعنا كلمة بل في الفراغ نحصل على العبارة "إن بل هو الذي اخترع جهاز الهاتف" وهذه العبارة صائبة. من الممكن أيضاً أن نستخدم متغيرًا لكتابة تقرير، كأن نكتب:

¸ص دولة يحدها البحر الأسود·

فنحن نستطيع أن نعوض عن المتغير ص بعناصر مجاله. أي نستطيع استبدال أسماء تؤدي إلى تقارير صائبة أو تقارير خاطئة بالمتغيِّر. فمثلاً:

¸المجر دولة يحدها البحر الأسود· تقرير خاطئ، إذ في الواقع لايكون مثل هذا التقرير صائبًا إلا إذا عوضنا عن المتغير ص بإحدى الدول: بلغاريا أو رومانيا، أو تركيا. فيكون التقرير ¸تركيا دولة يحدها البحر الأسود· مثلا صائبًا. وتسمى التعويضات التي تجعل التقرير صائبا جذوراً وتُسمّى المجموعة المكونة من جميع الجذور بمجموعة الحل. ومجموعة حل المثال السابق هي.}بلغاريا، رومانيا، تركيا{. وفي الجبر لانستخدم الأسماء للتعويض عن المتغيرات ولكن نستخدم الأعداد.

وتُعرف المعادلات على أنها جمل رياضية تعبر عن تساوي صيغتين. فالعبارة:

س + 7 = 12

على سبيل المثال، معادلة سهلة تعني ¸حاصل جمع العدد 7 مع عدد ما يساوي12·. ولحل هذه المعادلة نستطيع أن نقوم بالتعويض عن س بأعداد مختلفة حتى نحصل على عدد يجعل من المعادلة تقريراً صائبًا. فإذا عوضنا عن س بالعدد 5 تصبح المعادلة تقريرًاً صائبًا، وإذا عوضنا عن س بأي عدد آخر فإن المعادلة تصبح تقريرًا خاطئاً. إذن مجموعة حل هذه المعادلة هي {5} وهذه المجموعة تحتوي على جذر واحد فقط.

ومن الممكن أن يكون للمعادلة أكثر من جذر:

س ² + 18 = 9 س.

العــدد 2 أعــلى المتغيـر الأول س يعني أن العدد الممثل بالمتغير س هـو عــدد مربع، أي أنه عــدد مضروب في نفسـه مــرة واحدة.
وفي هذه المعادلة نستطيع أن نعوض عن س بالعدد 3:

3 × 3 + 18 = 9 × 3

9 + 18 = 27

27 = 27

ونستطيع أيضا أن نعوض عن س بالعدد 6:

6 × 6 + 18 = 9 × 6

36 + 18 = 54

54 = 54

أمّا أي تعــويض آخـــر عن س فيجعــل المعادلة تقريراً خاطئاً. إذن 3 و 6 هما جذرا المعادلة. ومن ثم فإن مجموعة الحل هي { 6، 3}.

كذلك توجد معادلات ليس لها جذور:

س = س + 3

إذا عوضنا عن س بأي عدد، فإن هذه المعادلة تصبح تقريراً خاطئاً، ومجموعة حلها تسمى المجموعة الخالية ويرمز لها بالرمز { }.

ولبعض المعادلات عدد غير منته (لامحدود) من الجذور.

(س + 1)² = س² + 2 س + 1

في هذه المعادلة إذا عوضنا عن س بأي عدد فإننا نحصل على تقرير صائب، ومجموعة حلها تحتوي على جميع الأعداد.